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Long QT syndrome, artificial intelligence, and

common sense
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This editorial relates to ‘Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and

diagnosis of long QT syndrome’ by E. Prifti et al., doi:10.1093/eurheartj/ehab588.

We are being inundated by so many articles dealing with artificial in-
telligence (AI) to the point that one begins to wonder about what
happened to natural intelligence. Clinical cardiologists are following
these rapid developments with mixed feelings. They struggled in the

1990s to survive the assault by the genetic jargon and still shiver
recalling how they survived the jungle populated by introns and stop
codons, and are now cowed by the new army of ‘machine learning’,
‘convolutional neural networks’, and ‘deep learning algorithms’.
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Graphical Abstract Top: current situation. A patient receives an IKr blocker from his/her doctor, develops TdP, and dies. Bottom: possible fu-
ture. A patient receives an IKr blocker from his/her doctor but he/she wears a device operated by AI. This device recognizes a significant rise in the
footprint of IKr block (TdP footprint) in a timely manner. This offers the patient sufficient time to alert his/her doctor, who can then act in time to
avert the risk of TdP.
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These fears, however, are unjustified. Under the cover of Latin, most
of these new methodologies are just complex and elegant ways to
use a rather old instrument: pattern recognition. This essentially is
what we all use to recognize other human beings, not by measuring
the distance between their eyes or the size of their ears, but by simply
recognizing ‘a face’. Cardiologists are not new to this approach as al-
ready several years ago, using natural intelligence, they wrote ‘one
does not measure the QT interval, one looks at it’.1

The use of the term AI has skyrocketed during the last few years
and it has recently also entered the field of cardiac arrhythmias.2,3

These AI applications are largely based on the analysis of signals rep-
resenting cardiac electrical activity, specifically ECG and photo ple-
thysmography, the latter being used in wearable devices, including
watches and smart phones. One area that presents many facets for
potential reward by the use of AI technology is the one related to
prolongation of the QT interval, be it due to genetic mutations such
as the congenital long QT syndrome (cLQTS),4 or secondary to
drugs5 (drug-induced long QT syndrome, di-LQTS) or conditions
such as hypokalaemia5 and acute myocardial infarction.6 The import-
ance of QT prolongation is related to its established association with
life-threatening arrhythmias, especially Torsades de Pointes (TdP)
ventricular tachycardia, and sudden death.7 It is thus not surprising
that investigators, knowledgeable in the field of LQTS,8,9 have started
to apply AI methodologies to this intriguing disorder, which probably
represents the best example of a tight correlation between genotype
and phenotype.10 These studies by Ackerman’s group focused pri-
marily on the detection of cLQTS and the apparent superiority of AI
compared with the simple assessment of QTc.8,9

A major progress in this rapidly developing field is presented in this
issue of the European Heart Journal, where the group led by Prifti and
Salem reports its AI-driven model developed to detect ECG patterns
that reflect diLQTS.11 This study is also important for cLQTS, but
goes well beyond it. They used a convolutional neural network
(CNN) trained with one dataset (and validated in another independ-
ent similar dataset) to analyse ECGs from healthy individuals before
and after the intake of sotalol, a blocker of IKr, the cardiac ion current
impaired in cLQTS type 2 (LQT2). In effect, this novel AI-driven
model is designed to recognize ECG patterns associated with IKr

block, independently of its origin. Prifti et al. demonstrate that their
model has high accuracy in identifying not only ECGs of healthy indi-
viduals taking sotalol, but also of LQT2 patients. Furthermore, their
model correctly also identified ECGs of LQT1 and LQT3 patients, al-
beit with somewhat lower accuracy compared with LQT2. Even
though the shape of the T-wave already differs upon visual inspection
between the cLQTS types,12 it is clear that some elements of the
ECG are shared between the various types of cLQTS, most import-
antly obviously QT prolongation.

The main advance of this novel AI model probably lies in its ability
to recognize IKr block from a simple ECG. This is important, because
IKr block underlies the vast majority of diLQTS cases7, as IKr is
blocked by a wide range of drugs prescribed for the treatment of
both cardiac conditions (class Ia and III antiarrhythmic drugs, for
which IKr block is their designed mode of action) or non-cardiac con-
ditions (e.g. antidepressant, anticancer, antiemetic, antibiotic drugs,
for which IKr block is an off-target effect).7 diLQTS has great clinical
relevance because of the widespread use of these drugs. This AI
model may be of particularly great significance for the prescription

and follow-up of non-cardiac QT-prolonging drugs, which are mostly
prescribed by physicians (typically non-cardiologists) who have less
knowledge and experience with ECG analysis, and often less access
to tools for ECG recording. Indeed, the real-life risk of sudden cardiac
arrest of non-cardiac QT-prolonging drugs actually exceeds that of
cardiac QT-prolonging drugs.13 Of particular interest, there are two
features of the novel AI tool that seem to render it suitable for appli-
cation as a QT-monitoring tool, which may change clinical practice:
its ability to detect changes in the ECG pattern at least 24 h before
TdP actually occurs, and the fact that its diagnostic accuracy is equally
high in a one-lead ECG recording as in a 12-lead recording. These fea-
tures are key assets for the development of an easy-to-use (possibly
operated by the patient) remote monitoring system to detect poten-
tially hazardous ECG changes in time to take actions to avert arrhyth-
mic risk. Such a novel risk-monitoring system may not only be
superior to current methods, but it may also change the way we util-
ize QT-prolonging drugs. This system may replace our strategy of
pre-prescription risk prediction, currently used but far from perfect,
with more accurate real-time monitoring. This may not only reduce
the risk of adverse arrhythmic events, but it may also give us more
confidence when prescribing these drugs, thereby allaying our fears
and, in some patients, lifting our overprotective inhibition to pre-
scribe these drugs on which large patient groups with a wide variety
of medical conditions have to rely.

CNNs were introduced by LeCun et al.14 in 1990 with the object-
ive to automatically extract abstract features from the data while pre-
serving their spatial configuration as well as ensuring the property of
translation invariance, which is the ability to recognize the objects
even when the appearance varies under a number of transformations.
These characteristics made CNN models very popular in many fields
where shapes are important, including image and signal analysis. The
basic architecture of CNNs is composed of three types of layers, i.e.
convolutional, pooling, and fully connected layers14 combined to-
gether multiple times. Different declinations of CNNs have greatly
improved their performances, including residual based architectures
such as the most recent DenseNet.15 Unlike traditional linear convo-
lutional architectures, DenseNet, also used by Prifti et al., extracts
ECG features and reuses them later in the network. Therefore, each
layer receives inputs from all the preceding ones and passes its own
output to all subsequent layers. As a consequence, the final output
layer has direct information from every preceding layer, which opti-
mizes computation, while allowing complex multilevel representation
of the features detected anywhere on the input signals.

At variance with most previous studies, where CNN models
are applied to pre-processed (e.g. filtered) heart beat data, Prifti
et al. applied their DenseNet model on 10 seconds of unpro-
cessed ECG data without any additional inputs. While often cate-
gorized as black boxes, deep neural networks such as CNNs can
be probed with the proper set of tools to inform the user of
how they see the data, and what part of the signal contributed
most to their decision, e.g. the initial part of the ST segment in
the present algorithm.11 A whole field in AI is focusing on making
these models more interpretable.

Prifti et al. are the first to demonstrate what risk footprints on
ECG could look like.11 This principle lies in the fact that ECGs may
contain subtleties not always readily interpretable by humans. It is
likely that several other risk conditions such as ischaemia or heart
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..failure may be similarly identified from the ECG. Thus, the ability to
recognize underdiagnosed, potentially treatable conditions from an
ECG in a cost-effective manner holds the potential to improve popu-
lation health.

There is a possibility that in the near future AI will replace rule-
based expert systems, since deep learning approaches result in better
recognition of complex patterns hidden in high dimensional medical
data. However, there are limitations that need to be considered and
overcome. Deep learning approaches, as others, require large train-
ing datasets to achieve high quality and unbiased results. Also, data
are often obtained from specific populations, which may introduce
bias and limit the generalization of the models. Another potential
stumbling block is represented by interpretability of the results. In
general, it is difficult to interpret non-linear features of deep neural
networks because results depend on complex interactions with fea-
tures from other layers. Making these models more robust, unbiased,
and interpretable for clinical use will require large clinical studies
where the same concepts of evidence-based medicine should apply.
This should also tackle legal and ethical issues in using them in clinical
practice.

At the end of the day, one has to recognize that the study by Prifti
et al.11 has the potential to be ground-breaking conceptually and in its
translational impact. Indeed, the possibility that the risk of life-
threatening arrhythmia might be reduced by involving patients in
monitoring their own risk with an easy-to-use wearable device that
uses AI to detect tell-tale ECG changes well in time for them to call
on their physician and for the physician to take appropriate life-saving
actions may no longer belong to science fiction.
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